Kainate seizures cause acute dendritic injury and actin depolymerization in vivo.

نویسندگان

  • Ling-Hui Zeng
  • Lin Xu
  • Nicholas R Rensing
  • Philip M Sinatra
  • Steven M Rothman
  • Michael Wong
چکیده

Seizures may cause brain injury via a variety of mechanisms, potentially contributing to cognitive deficits in epilepsy patients. Although seizures induce neuronal death in some situations, they may also have "nonlethal" pathophysiological effects on neuronal structure and function, such as modifying dendritic morphology. Previous studies involving conventional fixed tissue analysis have demonstrated a chronic loss of dendritic spines after seizures in animal models and human tissue. More recently, in vivo time-lapse imaging methods have been used to monitor acute changes in spines directly during seizures, but documented spine loss only under severe conditions. Here, we examined effects of secondary generalized seizures induced by kainate, on dendritic structure of neocortical neurons using multiphoton imaging in live mice in vivo and investigated molecular mechanisms mediating these structural changes. Higher-stage kainate-induced seizures caused dramatic dendritic beading and loss of spines within minutes, in the absence of neuronal death or changes in systemic oxygenation. Although the dendritic beading improved rapidly after the seizures, the spine loss recovered only partially over a 24 h period. Kainate seizures also resulted in activation of the actin-depolymerizing factor, cofilin, and a corresponding decrease in filamentous actin, indicating that depolymerization of actin may mediate the morphological dendritic changes. Finally, an inhibitor of the calcium-dependent phosphatase, calcineurin, antagonized the effects of seizures on cofilin activation and spine morphology. These dramatic in vivo findings demonstrate that seizures produce acute dendritic injury in neocortical neurons via calcineurin-dependent regulation of the actin cytoskeleton, suggesting novel therapeutic targets for preventing seizure-induced brain injury.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rapamycin prevents acute dendritic injury following seizures.

OBJECTIVE Seizures cause acute structural changes in dendrites, which may contribute to cognitive deficits that occur in epilepsy patients. Disruption of the actin cytoskeleton of dendrites likely mediates the structural changes following seizures, but the upstream signaling mechanisms activated by synchronized physiological activity to cause seizure-induced dendritic injury are not known. In t...

متن کامل

The actin-severing protein gelsolin modulates calcium channel and NMDA receptor activities and vulnerability to excitotoxicity in hippocampal neurons.

Calcium influx through NMDA receptors and voltage-dependent calcium channels (VDCC) mediates an array of physiological processes in neurons and may also contribute to neuronal degeneration and death in neurodegenerative conditions such as stroke and severe epileptic seizures. Gelsolin is a Ca2+-activated actin-severing protein that is expressed in neurons, wherein it may mediate motility respon...

متن کامل

Street rabies virus causes dendritic injury and F-actin depolymerization in the hippocampus

Rabies is an acute viral infection of the central nervous system and is typically fatal in humans and animals; however, its pathogenesis remains poorly understood. In this study, the morphological changes of dendrites and dendritic spines in the CA1 region of the hippocampus were investigated in mice that were infected intracerebrally with an MRV strain of the street rabies virus. Haematoxylin ...

متن کامل

The Anticonvulsant and Antioxidant Effects of Berberine in Kainate-induced Temporal Lobe Epilepsy in Rats

Introduction: Temporal lobe epilepsy(TLE) is a long lasting neurological disorder in which patients suffer from spontaneous seizures. New treatments with novel mechanisms of action are needed to help those patients whose seizures are resistant to available drugs. In this study, we investigated the possible neuroprotective effect of berberine in an intrahippocampal kainate model of TLE in rat. M...

متن کامل

Spinophilin regulates the formation and function of dendritic spines.

Spinophilin, a protein that interacts with actin and protein phosphatase-1, is highly enriched in dendritic spines. Here, through the use of spinophilin knockout mice, we provide evidence that spinophilin modulates both glutamatergic synaptic transmission and dendritic morphology. The ability of protein phosphatase-1 to regulate the activity of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropioni...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 27 43  شماره 

صفحات  -

تاریخ انتشار 2007